
Abstract  Recently a non-invasive acoustical method
has been developed to detect respiratory phases without
airflow measurement, in which the average power of
tracheal breath sounds is used to detect the onset of
breaths [1]. We improved the accuracy of the breath
onsets detection by applying variance fractal dimension
Dσσ . For the sake of a comparison, the same set of data as
in [1] was used. Data included tracheal breath sound
recorded simultaneously with airflow from nine healthy
subjects. Variance fractal dimension was used to detect
the onset of breaths directly from the time domain
tracheal sound signals. Result shows that onsets can be
detected by the peaks of the variance fractal dimension,
with an accuracy of 40±± 9 ms. Comparing to the accuracy
reported in the previous method (41.5±± 34.7 ms), this
study slightly improves the average error but also is
more robust in term of standard deviation. It also
provides an alternative approach to analyze breath
sound signals in time domain. The result increases the
reliability of acoustical phase detection algorithm and
paves the way for further analysis such as actual amount
of airflow estimation.
Keywords  respiratory sounds, variance fractal
dimension, breath onsets, signal complexity

I. INTRODUCTION

The determination of respiratory phases is essential in the
study of respiratory and swallowing sounds [2]. To date,
pneumotachograph, nasal cannulae connected to a pressure
transducer, heated thermistor anemometry etc are commonly
used to record respiratory airflow [3]. However, each
method has its limitations when assessing the airflow of
either a neurological impaired patient or a patient with
physical deformities. In addition, some may even alter the
pattern of respiration [1]. Acoustical analysis of respiratory
sounds has recently provided an alternative way to detect
respiratory phases without airflow measurement [1]. The
acoustical phase detection algorithm has shown promising
results in respiratory phase detection by using only tracheal
and chest sounds. Breath onsets were detected by detecting
minimum points of the average power of tracheal signals,
where the tracheal sound intensity was low [1]. In this study
however, we aimed to investigate the fractal dimension of

the tracheal sound signal as another approach to detect the
breath onsets.
     Fractal dimension is a measure of complexity in a data
set, either two or three-dimensional images or one-
dimensional signals. It is used to analyze chaotic and non-
chaotic signals in a wide range of scientific research,
particularly in image compression, segmentation and in
genetic maps [6,7,8]. Fractal dimension quantifies the
complexity of an object which is obscure to human eyes.
Variance fractal dimension Dσ (Equation 1) is one of the
ways to calculate fractal dimension [4,5]. Generally, fractal
dimension can be obtained by taking the limit of the
quotient of the log change of the object size and the log
change of the measurement scale, as the measurement scale
approaches zero (Equation 2). In deriving variance fractal
dimension for one-dimensional data, sampled signal is the
“object”, variance (σ) of the sampled signal is the "object
size", while the time interval between the samples used to
calculate the variance, is the "measurement scale" (∆tk). One
property of fractal dimension is that they are independent of
power content in the signal. This indicates that all signals,
both with high or low amplitude, will produce the same
magnitude of fractal dimension as long as they are
composed of the same frequency components. In other
words, fractal dimension calculates the complexity of signal
and is immune to signal amplitude.
     We postulate that breath sound signal has a chaotic
feature during the short period of time between the phases
(inspirationàexpiration or expirationàinspiration).
Therefore, we hypothesize that variance fractal dimension
of respiratory sound has peaks at the breath onsets and this
may lead to a better approach in the automated detection of
the breath onsets by acoustical means. Hence, the main
objective of this study was to detect and compare the
accuracy of breath onset detection using variance fractal
dimension with that of the previous method in [1].

II. METHOD

Subjects and data  Data from 9 subjects were adopted
from the previous research [1].  The tracheal sound was
recorded by accelerometer and airflow was measured by a
mouthpiece  pneumotachograph. Figure 1 shows a typical
sample of the respiratory sound and its corresponded
airflow. The airflow and tracheal sound signals were
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digitized simultaneously at a sampling rate of 10240 Hz.
The detailed information about data can be found in [1].

 
FIGURE 1. A typical tracheal breath sound signal with its
associated airflow.

Onset detection by variance dimension  A time series
representing a chaotic or non-chaotic process can be
analyzed directly by examining the spread of the increments
in the signal amplitude, e.g. variance, σ2.
     From [4,5], the variance fractal dimension is defined as:

       Dσ= DE – 1 + H,                                 (1)

where DE is the embedding dimension, which is the
dimension of the embedding space, (i.e., for a  curve DE=1,
a plane DE=2 and for space DE=3) and,
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S is the sound data samples and therefore ∆S is the variation
of tracheal sound signal between two points.

               ∆t= | t2 - t1 |
       (∆S)∆t = S(t2) - S(t1)

Figures 2 and 3 show (∆S)∆t and ∆t graphically.
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FIGURE 2. Illustrating (∆S)∆t.

FIGURE 3. Illustrating the measurement scale ∆tK  for Dσ
calculation. For dyadic measurement scale ∆tK=2, 4, 8, 16,
32,….

     To detect breath onsets, Dσ was calculated using NT=128
points (12.5ms) with 50% overlap between the adjacent
segments. Then, a running window with approximately half
breath size (0.7second) was used to detect all the peaks in
Dσ.

III. RESULTS

FIGURE 4. An actual airflow signal and the calculated
variance fractal dimension. The circles are the detected
locations of breath onsets in both plots.

     Figure 4 shows the breath onsets detected from variance
fractal dimension Dσ with the actual corresponded airflow.
Comparing with the actual airflow, the result shows an
average error of 40±9 ms, which is slightly less than the
error presented in the previous study [1]. However, the
standard deviation of the error in this method is much
smaller than the previous one.

IV. DISCUSSION

     In this study, we postulated that during the transition of
breath phases, the sound signal has temporal chaotic
features due to the momentum of airflow as it changes its
direction. Hence, this leads to a chaotic process, which can
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be detected by its signal complexity using variance fractal
dimension Dσ. As can be seen in Figure 4, variance fractal
dimension approaches a value of two, indicating the signal
during transition of phases has a complexity between a line
and a plane. It cannot be a pure line because all data points
do not lie in a straight line; it cannot be a plane as well since
the area for one-dimensional signal is zero. This important
characteristic of non-integer fractal dimension has been used
extensively in describing and classifying speech phonemes
[9].
     The advantage of variance fractal dimension Dσ is that it
does not compromise between frequency and time
resolution, while the accuracy of breath onset detection by
average power method depends on the window size to
segment data and the window size option is limited by the
trade off between the time and frequency resolution. Dσ,
however, concerns solely with time resolution NT. By
changing the size of NT, the magnitude of  Dσ also changes.
Optimum NT interval size is obtained when Dσ shows
prominent peaks.
     The attraction of variance fractal dimension is also that
Dσ can be calculated directly in time-domain. It can be
programmed to have a real-time procedure to calculate Dσ
while tracheal sound signal is being received.
     In conclusion, the result of breath onset detection using
variance fractal dimension is encouraging. Further
experiments have to be carried out to examine whether
variance fractal dimension is also useful in determination of
respiratory phases from the chest sound signals.
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